
 TLP:WHITE

DISCLAIMER: This report is provided “as is” for informational purposes only. The Department of Homeland Security (DHS) does not provide any warranties
of any kind regarding any information within. DHS does not endorse any commercial product or service referenced in this advisory or otherwise. This document
is distributed as TLP:WHITE: Disclosure is not limited. Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in
accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:WHITE information may be distributed without
restriction. For more information on the Traffic Light Protocol, see https://www.us-cert.gov/tlp.

 TLP:WHITE

MAR-17-352-01

April 10, 2018 Malware Analysis

MAR-17-352-01 HatMan—Safety System Targeted Malware (Update A)

Table of Contents

1. Executive Summary ... 2

2. Acknowledgements .. 2

3. A Note on Terms .. 2

4. Analysis .. 2
5. Technical Details .. 6

6. Implications .. 18

7. Detection/Mitigation 19

8. Contact Information .. 20

9. Feedback ... 20
Appendix A: YARA Signature 21

Tables

Table 1: HatMan malware components. 6

Figures

Figure 1: Overall flow of the HatMan malware. 3

Figure 2: Python driver operation. 8

Figure 3: Layout of payload. 9

Figure 4: Complete append operation. 10

Figure 5: Control value setting program. 11

Figure 6: Operation of the injector. 12

Figure 7: Full injection process. 15

Figure 8: Operation of implant. 17

TLP:WHITE

Page | 2 of 24 TLP:WHITE

1. Executive Summary
This updated malware analysis report is a follow-up to the original malware analysis report titled
MAR-17-352-01 HatMan—Safety System Targeted Malware that was published December 18,
2017, on the NCCIC/ICS-CERT website.

The HatMan malware, also known as TRITON and TRISIS, affects Triconex Tricon safety
controllers by modifying in-memory firmware to add additional programming. The extra
functionality allows an attacker to read/modify memory contents and execute arbitrary code on
demand through receiving specially-crafted network packets. HatMan consists of two pieces: a
PC-based component to communicate with the safety controller and a malicious binary
component that is downloaded to the controller. Safety controllers are used in a large number of
environments, and the capacity to disable, inhibit, or modify the ability of a process to fail safely
could result in physical consequences. This report discusses the components and capabilities of
the malware and some potential mitigations.

2. Acknowledgements
This analysis is the product of extensive collaboration between several groups. The degree of
depth reached in this document would not have been possible without the cooperation and
knowledge of Schneider Electric.

3. A Note on Terms
This document uses the terms “Triconex” and “Tricon” frequently throughout. For clarity,
“Triconex” refers to the overall product line produced by Schneider Electric, whereas “Tricon”
refers to the actual safety system hardware.

4. Analysis
HatMan follows Stuxnet and Industroyer/CrashOverride in specifically targeting devices found in
industrial control system (ICS) environments, but surpasses both forerunners with the ability to
directly interact with, remotely control, and compromise a safety system—a nearly
unprecedented feat. This section will discuss the malware’s context, components, and
capabilities at a reasonably high level. Refer to Section 5 for a deeper dive into the inner
workings of the malware.

4.1. Vulnerable Systems
Triconex MP3008 main processor modules running firmware versions 10.0–10.4 are vulnerable
to HatMan. Based on testing, versions earlier or later than this are not vulnerable to the analyzed
malware sample as is; however, it is not known whether adjustments to the malware or
exploitation of a different vulnerability might lead to a successful compromise of other versions of
the firmware. This version of the hardware uses an MPC860 PowerPC processor, where newer
Triconex safety systems are ARM-based; this means that a different version of the malware
would be required to target newer Tricons.

TLP:WHITE

Page | 3 of 24 TLP:WHITE

4.2. Context: What are Safety Systems?
Safety systems, also known as safety instrumented systems (SIS) or “safety PLCs
(programmable logic controllers),” are specialized hardware—similar to traditional PLCs—with a
strong emphasis on reliability and predictable failure. Unlike traditional PLCs, safety PLCs often
have redundant components such as multiple main processors, watchdog capabilities to self-
diagnose anomalies, and robust failure detection on inputs and outputs. They are used to
provide a way for a process to safely shut down when it has encountered unsafe operating
conditions and to provide a high degree of safety and reliability, with important monitoring
capabilities for process engineers. Though they are designed never to fail, they are also
designed such that, were one to fail, it would fail in a predictable manner so that the worst-case
scenario is known and planned for ahead of time.

4.3. Overview of Operation
Prior to discussing the individual components of the HatMan malware, it is worthwhile to provide
a brief, high-level overview of how an attacker would utilize HatMan to compromise a safety
controller. Figure 1 shows the overall sequence of events of these two operations.

Threat Actor Python Injector ImplantController

Runs script

Connects to controller

Requests system state

System state

Sets argument

Appends injector

Requests system state

System state

State matches

Overwrites injector

Runs script

Connects to controller

Sends malicious command

Returns response

Triggers implant

Return packet contains result

Runs program

Writes payload

Enables payload

Reads memory or Writes memory or Executes code

Escalates privileges

Checks system state

Reverts privileges

Repeat

May repeat

Figure 1: Overall flow of the HatMan malware.

TLP:WHITE

Page | 4 of 24 TLP:WHITE

The threat actor’s first step—after having compromised a computer within the safety network—is
to execute the main HatMan Python script (script_test.py, compiled into trilog.exe) that
leverages a custom implementation of an internal TriStation protocol (library.zip). This script,
in turn, connects to the controller, gathers some information about the system state, then begins
the attack. It first sets an argument for the injector, then downloads a combination of the injector
and implant to the device as a new program for the controller to run. The script then periodically
checks the system state to determine if the injector has completed or not.

Concurrently, the injector begins executing automatically on the controller. It begins by verifying
that the controller looks like it is able to be compromised through several tests that exercise the
vulnerability the injector leverages. Once it has done enough testing, the injector uses the
vulnerability to escalate its privileges on the device, write the implant into the in-memory firmware
region, enable the implant, and revert its privileges. It then reports that it has finished.

The Python script, seeing that the injector has completed its execution, overwrites the program
slot that it had used for the injector with a “dummy” program and exits. At this point, the controller
has been fully compromised.

The threat actor could now exercise the capabilities of the HatMan implant—a remote acess
trojan, orRAT, capable of reading and writing memory and executing arbitrary code. The same
Python implementation of the TriStation protocol includes functions for utilizing this capability;
thus, all the attacker would need to do to exploit this functionality would be to use a similar script
to connect to the controller. Utilizing the three functions HatMan provides as building blocks, the
attacker can then effect as complicated of changes as he wants to the controller.

4.4. Components
HatMan consists of two parts: a more traditional PC-based component that interacts with the
safety PLCs, and a binary component that compromises the end device when downloaded. Files
related to these components could appear on a workstation or similar device and might mimic
legitimate TriStation software paths and/or filenames.

The PC-based component consists of three pieces in the form observed:

• An executable that programs a Tricon device without the TriStation software,
• A native shellcode program that injects a payload into the in-memory copy of the Tricon

firmware, and
• A native shellcode payload that performs malicious actions.

4.4.1. Reprogramming the Safety PLC
In its current iteration, the HatMan component that programs a Tricon is written entirely in
Python, although nothing would preclude these being written in a different language. The
modules that implement the communication protocol and other supporting components are found
in a separate file—library.zip—while the main script that employs this functionality is
compiled into a standalone Windows executable—trilog.exe.

This Python script communicates using four Python modules—TsBase, TsLow, TsHi, and
TS_cnames—that collectively implement the TriStation network protocol (“TS”, via UDP 1502);

TLP:WHITE

Page | 5 of 24 TLP:WHITE

this is the protocol that the TriStation software uses to communicate with Triconex safety PLCs.
Although this protocol is undocumented, it is similar to the officially documented user application
TSAA (Triconex System Access Application) protocol, used for reading and writing data points
from a third-party program. Due to this, it could feasibly have been reverse engineered from
knowledge of the TSAA protocol, other manufacturers’ documentation, and studying traffic
between the programming workstation and safety PLC. In addition, this protocol does not require
any authentication or encryption, although ACLs (Access Control Lists) may be configured on the
PLC. The Python script is also capable of autodetecting Triconex controllers on the network by
sending a specific UDP broadcast packet over port 1502.

In addition to their implementation of the TriStation protocol, the Python modules expose a set of
methods to interact with the compromised safety PLC. These send specially-crafted network
commands to pass messages to the implant in order to read and write memory or execute
arbitrary code. These commands may be sent from any device on the safety network and will be
accepted by the compromised controller, regardless of key switch position.

The script embedded in trilog.exe connects to a TCM (Tricon Communication Module) using
an IP address provided as an argument. Once it establishes a connection, it tries to determine if
the Tricon could be compromised. This is accomplished by checking the current state of the
device, then downloading a small PowerPC program (PresetStatus) to the Tricon that, when
executed, sets an argument or “control value” in the Tricon’s memory. If the control value was
successfully set, the script constructs a malicious program—comprised of the injector
(inject.bin) and implant (imain.bin)—that it downloads to the controller. Once this program
has finished running, the script checks whether or not the injector succeeded. Regardless of
outcome, the script cleans up after itself before finishing.

This script does not interact with the command modified by the malicious payload, but it is
feasible and likely that a separate script was used to actually utilize the RAT functionality of the
compromised safety controller as needed.

4.4.2. The Malicious Payload
The malicious shellcode is split into two separate pieces—inject.bin and imain.bin. The
former is a less specific generic code that handles injecting a payload into the in-memory running
copy of the firmware, while the latter is the payload that actually provides the additional malicious
functionality. Both binary components are PowerPC machine code—the same as the controller’s
firmware and any user programs.

The injector masquerades as a standard compiled PowerPC program for the Tricon. It uses the
control value written by the PresetStatus program in several ways: as an input argument; as a
step counter to track execution progress; and as a field for writing debug information.

During each cycle, the injector is run, branching based on the step value stored in the control
field. It begins by waiting a number of cycles (or seconds, since each cycle is usually a second)
based on the control value. It then checks to ensure the vulnerability it intends on exploiting is
available. The final step exploits the vulnerability to gain supervisor permissions, then copies the

TLP:WHITE

Page | 6 of 24 TLP:WHITE

payload into memory, patches a RAM/ROM consistency check, changes the jumptable entry for
a specific TS (TriStation) protocol command to the address of the copied payload, and returns.

Once the injector has finished running, it will have modified the address of the handler for a
specific TS protocol command such that, when that command is received, the payload may be
executed instead of normal processing.

The second component of the malicious program—the payload, imain.bin—is designed to take
a specific TriStation protocol command, look for a specially-crafted packet body, and perform
custom actions on demand. It is able to read and write memory on the safety controller and
execute code at an arbitrary address within the firmware. In addition, if the memory address it
writes to is within the firmware region, it disables address translation, writes the code at the
provided address, flushes the instruction cache, and re-enables address translation. This allows
the malware to make changes to the running firmware; however, these changes will be persistent
only in memory, and will be lost when the device is reset fully.

5. Technical Details
This section presents a deeper analysis of the HatMan malware, providing a much more
extensive look into the technical details. This malware is highly sophisticated and involves a
number of distinct components. Several of these have already been extensively discussed
elsewhere, but others have not received the same amount of consideration. Table 1 provides the
set of components that will be discussed, the relationship between them, and the associated
SHA-1 hash for each. These components are described in the following sections.

Table 1: HatMan malware components.

Filename Description SHA-1 Hash
library.zip Module archive 1dd89871c4f8eca7a42642bf4c5ec2aa7688fd5c
TsLow.pyc Protocol impl. a6357a8792e68b05690a9736bc3051cba4b43227
TsBase.pyc Protocol impl. d6e997a4b6a54d1aeedb646731f3b0893aee4b82
TsHi.pyc Protocol impl. 66d39af5d61507cf7ea29e4b213f8d7dc9598bed
TS_cnames.pyc Protocol impl. 97e785e92b416638c3a584ffbfce9f8f0434a5fd
crc.pyc Support module 2262362200aa28b0eead1348cb6fda3b6c83ae01
sh.pyc Support module 25dd6785b941ffe6085dd5b4dbded37e1077e222

trilog.exe Compiled Python dc81f383624955e0c0441734f9f1dabfe03f373c
PresetStatus PPC Tricon program 78265509956028b34a9cb44d8df1fcc7d0690be2
dummy PPC Tricon program 1c7769053cfd6dd3466b69988744353b3abee013
inject.bin PPC Tricon program f403292f6cb315c84f84f6c51490e2e8cd03c686
imain.bin PPC shellcode b47ad4840089247b058121e95732beb82e6311d0

5.1. Module Archive
library.zip contains a number of compiled Python modules (.pyc files); these are generated
during normal execution of the Python interpreter. Use of the compiled modules, instead of the

TLP:WHITE

Page | 7 of 24 TLP:WHITE

source code, may have been to help obscure its purpose. The large majority of the files
contained within this archive are standard Python libraries, but there are a few exceptions (see
Table 1 above). Collectively, these can be treated as the TriStation protocol implementation.

5.1.1. TriStation Protocol Implementation
The four compiled Python files beginning with “TS” collectively implement the TriStation protocol.
TsLow.pyc, TsBase.pyc, and TsHi.pyc each implement successively higher-level portions.

TsLow implements the lowest-level functionality—UDP, TCM, and TS (TriStation) packet building,
sending, receiving, and parsing. The rest of the functionality is built upon this base.

TsBase uses the TS packet capabilities of TsLow to perform individual actions on the controllers,
such as downloading and uploading programs, retrieving device status, and running programs.

TsHi abstracts the individual actions of TsBase to provide simple ways of performing
complicated tasks, such as appending a program, uploading one or more programs or functions,
retrieving the program table, and interpreting returned status structures.

The final module—TS_cnames—provides string representations of a number of different features
of the TS protocol, including message and error codes, key position states, and other values
returned by the status functions

5.1.2. CRC Support Module
crc.pyc implements or imports a number of standard CRC functions and includes input and
polynomial pairs for several different standards, including Modbus and XMODEM. The inclusion
of the extra CRC functions is interesting, since the TriStation protocol does not use them.

5.1.3. Assorted Support Module
sh.pyc provides a few utility functions for flipping endianness and printing out binary data with a
hexadecimal representation. It is not especially interesting, but is a custom module that can be
tied to the HatMan malware.

TLP:WHITE

Page | 8 of 24 TLP:WHITE

Cleanup

Run ProgramSet Arguments

script_test.py

Exit

Set program arguments

Arguments
were set?

No

Program
appended?

No

Overwrite with dummy

Yes

Append injector

Yes Get CP status

Program still
running/valid?No

Control field
changed? No

Yes

Still running
(step <15)?

Yes

No Yes

preset_status inject/imain

Figure 2: Python driver operation.

5.2. Python Executable
trilog.exe uses the functionality provided by library.zip to communicate with and infect a
Tricon controller. This Windows executable is a Python script—script_test.py—compiled to
run standalone. The diagram in Figure 2 shows the normal operation of this script.

When the script begins, it attempts to append (essentially download) an embedded PowerPC
blob (PresetStatus, discussed in Section 5.2.3) to the target Tricon’s program list. This
program, when executed by the Tricon, writes a hard-coded value into the control program
memory region; this value serves both as the argument to and status for the program that is
uploaded later. Once the program has been appended and executed, the script attempts to see if
the program ran successfully by retrieving the value it wrote to confirm that it changed to the new
value; if it does not match, the script terminates, as it is unable to operate on this controller. If the
value matches, execution moves on to the malicious section.

Upon success, the script builds the combined payload (discussed in Section 5.2.1), appends it to
the controller, and checks to see if execution was successful. This check consists of verifying
that the program still flags as valid and is running, checking to see if the control field has
changed, and, if so, checking that the recorded step is less than 15 (0xF)—the “stopped” value.
At most, the script will check 4096 times without the control field changing before exiting.

Once the script has finished running the malicious payload, it attempts to clean up after itself by
overwriting the malicious payload with a “dummy” program that does, quite literally, nothing.

TLP:WHITE

Page | 9 of 24 TLP:WHITE

5.2.1. Combined Payload
The malicious program that is downloaded to the Tricon consists of the following: the injector
(inject.bin); the length of the payload (the length of imain.bin plus eight); the first marker
(0x00001234); the payload (imain.bin); the same length again; and the second marker
(0x0056789A). Figure 3 shows the overall structure of the program.

Injector
inject.bin

Payload size
+ 8

Marker:
0x00001234

Payload
imain.bin

Payload size
+ 8

Marker:
0x0056789A

Payload size + 8

0 n

Figure 3: Layout of payload.

5.2.2. Appending Programs
Several times within this section, we refer to the concept of “appending” a program to the
controller. This is a very simplified term for the much more complicated sequence of actions the
Python modules take to add a program to a running controller—more complicated than just
allocating a new program and writing its contents. The diagram in Figure 4 provides an in-depth
look at how this is accomplished.

There are two ways of providing new programming to a Tricon—either via a “download all” or a
“download changes.” The former is used to download all of the user control application to the
Tricon, whereas the latter allows a number of changes to be pushed without requiring the entirety
of the application to be redownloaded. There are several differences worth noting:

• A “download all” requires the application on the controller to be stopped, while a
“download changes” may be executed while the application is running.

• Programs may only be deleted via a “download all,” although they may be fully
overwritten during a “download changes.”

When the “append” action is called, the Python function first checks to ensure that the controller
is in a state that it knows can have a program appended to it; this includes checking the key
state, ensuring the current programming is valid, and seeing if the user-provided logic on the
Tricon is running. The function then checks if any programs are currently being downloaded and,
if desired, can cancel them.

The Python function then counts the number of programs and functions on the controller and
tries to retrieve the final program in the program list. If this is successful, execution continues
with attempting to allocate and/or write the program slot using “download changes.”

The function attempts to append the program three times, stopping once it has succeeded;
however, during testing, any more than a single attempt to write the program resulted in at least
one main processor faulting. Each attempt consists of trying to start downloading changes,
checking to see if the final program has a custom CRC appended to it (allocating a new program
slot if it does not), and trying to write the program. If the write is successful, execution continues.

TLP:WHITE

Page | 10 of 24 TLP:WHITE

Append Program

Is key set
to program?

Return Success

Is program
valid?

Is program
running?

Yes

Yes

Already
downloading

program?

Yes

Force download?

Yes

Cancel download

Yes

Count programs/functions

Can read
final program and

function?

Final program
has CRC?

Yes

Download
changes
allowed?

Start download changes

No

Allocate new program

Write program

Yes

Yes

Cancel download

No

Success?
No

Success
confirmed?

Yes

No

Run program

Yes

Exception
occured?

No

Upload dummy program

Yes

No

Tried download
three times?

No

Force start?

Yes

Wait for program to start

No

Return Failure

No

No

No

No

No

Yes

Run program

Wait for program to start

Figure 4: Complete append operation.

If the program was appended and successfully run—with a “run” command if desired, otherwise
by waiting for the changes to take effect—the function returns success. If the append was
attempted but failed, the function attempts to cancel the download then returns failure. If the
append was successful, but an exception occurred when it ran, the function overwrites the
program slot with the “dummy” program and returns failure.

It is worth noting that generally the same program slot is always used by the Python component
of the malware—it is appended the first time a malicious program is downloaded and overwritten

TLP:WHITE

Page | 11 of 24 TLP:WHITE

any subsequent times. Specifically, this is to say that so long as the final program slot is marked
by the custom CRC appended to the program, it will continue to be used by the malware. If
another program were to be appended without this checksum (such as via the TriStation
software), the malware would allocate a new program slot to use.

In addition, it is also important to note that all of these actions—first appending, then
overwriting—do not require a “download all” to occur, only a “download changes”; however,
deleting a program requires a “download all” action. This is likely the reason why the script
overwrites its program slot with a dummy program, rather than deleting it altogether.

5.2.3. Control Value Setting
The program control value is set by a small PowerPC program that searches memory for two
known values; this is also known as “egg-hunting.”

Figure 5 details the operation of this component. The program is run each cycle, as it is added to
the program table on the Tricon; this has the side effect that, so long as this program is resident
on the controller, the field will be set repeatedly until the Python component overwrites that
program slot. When the program runs, it starts at the beginning of the control program region of
memory and walks, four bytes at a time, until it either reaches the egg (two consecutive, constant
values) or the end of the search region. If it finds the values, it writes the hard-coded control
value into an address at a constant offset after the location of the egg.

PresetStatus

Stop

Return

Runs each cycle

Firmware

Pointer to start address

Write control fieldIncrement pointer Does egg match?

Python
script_test.py

Yes

No

End of region?
No Yes

Hard-codes value
(before download)

Figure 5: Control value setting program.

Interestingly, the actual injector refers to this address by a constant address rather than egg-
hunting; it is not clear why PresetStatus searches for this address rather than just referencing it
directly. This could possibly be an additional check to see whether or not the system can be
infected—if the control value is not set correctly, the implant would not work. It also could
indicate that the PresetStatus program was written at an earlier stage of development when it
was not yet known that that value was always at the same offset in vulnerable firmware.

TLP:WHITE

Page | 12 of 24 TLP:WHITE

5.3. Injector/Implant
The combined program that the trilog.exe sends to the Tricon controller is a custom PowerPC
injection program that exploits a vulnerability in the device firmware to esca;ate [rovo;eges. Tjem
disables a firmware RAM/ROM consistency check, injects a payload (imain.bin) into the
firmware memory region, and changes a jumptable entry to point to the added code. Each of
these—the injector, the vulnerability, and the implant—will be discussed here.

The end result of the injector executing is that the functionality of the payload will be available via
a compromised network command (part of the TS protocol), providing the functionality of a
rudimentary RAT—reading and writing memory and executing arbitrary code—to an attacker on
any device on the safety network, regardless of key switch position.

5.3.1. Control Value
Throughout this section, there will be repeated references to a “control value.” This is the value
stored by the PresetStatus PowerPC program and essentially controls the execution flow of the
injector. The address of this value is within the structure handed back from the TS protocol “get
control program status” command. As the injector runs, it uses this control field several ways: as
an input argument that specifies the number of cycles to idle before attempting to inject the
payload; as a step counter to track/control execution progress; and as a field for writing debug
information upon failure. This allows an attacker to monitor and debug the injector as it runs.

5.3.2. Injector
The diagram in Figure 6 shows the overall operation of the injector, inject.bin; the actual
operation is somewhat more complex, but this provides a simplified discussion that covers the
important points. This diagram also shows how the different components of the injector interact
with the control field that was set previously.

Input

1

2

4
Stop

Default
Return

>0

=0

Yes

No
3

Wait for a preset number of
seconds before infecting

Use exploit to verify MSR is
stored at expected address

Verify exploit copies data as
expected given custom input

Inject imain.bin
Into firmware area

Runs each
cycle

Firmware

Success?

Check counter

Decrement counter

Set error step/value

Increment step

Finalize control value

inject.bin

Increment step

Control
Field Result

Error Value Step Fin
F00x 000000

Check step

Unused Counter Step
108000x 000

Figure 6: Operation of the injector.

TLP:WHITE

Page | 13 of 24 TLP:WHITE

Much like the PresetStatus program, the injector is executed by the firmware once each cycle.
The injector is written in a manner conducive to that—the current step of its execution is saved
into the final nibble of the control value and it branches based on the current step.

The first step simply waits for a number of cycles (or seconds, as one cycle is normally
equivalent to one second), decrementing the counter passed in as part of the argument set by
PresetStatus. Once this counter reaches zero, it increments the step value.

The second step uses a partial implementation of the exploit to verify that the value of the
machine state register (MSR) is stored at the expected address within the context of a system
call. The MSR controls privileges, endianness, address translation, and other low-level processor
features. This has been shown to fail on non-vulnerable versions of the MP3008 firmware. If it is
successful, it increments the step value again; otherwise, it marks failure and saves the value
that was copied into the control value for debugging purposes.

The third step again uses a similar partial implementation of the exploit to verify that the
vulnerable system call behaves as expected—verifying that both input and output structures may
be controlled by putting a known, two-byte value into the input and checking to see if it is copied
into the output structure. On success, it increments the step value, otherwise it marks a failure.

The fourth step actually performs the injection of the payload (imain.bin) into the firmware
region, using the full version of the exploit. This will be discussed in more depth later. Once this
has completed, the control value will have been finalized.

5.3.3. Injection Process
The diagram in Figure 7 shows the operation of the actual injection process. While this does not
specifically cover every single instruction, it shows the general flow of operation in enough detail
to provide an accurate description of the checks and actions taken.

This function is executed as part of the injector (Step 4 in Figure 6). Once this stage has been
reached, the vulnerability of the firmware has been confirmed and the control value should
indicate that the current step is four and no error has occurred. The “steps” indicated in the
diagram correspond to the value stored into the second-to-lowest nibble (mask 0xF0), where the
lowest nibble is set to 15 (0x0F) throughout this function.

• Step five—the first step—uses the exploit to enable supervisor privileges and disable
instruction and data caching via the MSR. This allows the rest of the code to function,
including reading from and writing to the firmware region.

• Step six disables external interrupts, likely to prevent any other code from interrupting the
changes that are being made to the system, then checks that an instruction that branches on
the result of a RAM/ROM consistency check may be patched (the patching will occur during
step twelve). Assuming success, it will continue.

• Step seven verifies that the jumptable entry that will be patched in step twelve has the
expected value (the address of the default case branch).

TLP:WHITE

Page | 14 of 24 TLP:WHITE

• Step eight verifies that the appended payload (see Figure 3 for how the injector and payload
are combined) appears to be in place by checking for the boundary markers.

• Step nine first determines where to place the payload within the firmware region based on a
constant value stored as part of the firmware, then checks to see if a previous payload exists
leading up to that location in memory; if one does, it is zeroed out.

• Step ten ensures that the payload has content, and that the area to put the payload (the area
leading up to the target address) is empty of any non-zero bytes. If it is empty, this is where
the payload will be placed, and execution will continue to step eleven; otherwise, execution
branches to step thirteen.

• Step thirteen checks to see if the payload will fit at the target address rather than leading up
to the target address; if it will, the new destination is at the target address and execution
continues at step eleven.

• Step eleven actually copies the payload into the in-memory firmware region at the previously
determined destination.

• Step twelve patches the jumptable entry for the overridden network command, patches a
memory consistency check, then flushes the instruction cache so that changes made to
firmware code immediately take effect.

• Finally, the function re-enables external interrupts and restores the system state to how it
was prior to the exploit having been triggered.

Once this code executes successfully, the implant (imain.bin) will have been copied to an area
within the in-memory firmware region and patched such that a specific network command will
trigger the malicious code being called rather than the default behavior.

In addition, a specific RAM/ROM consistency check will have been patched (during step twelve)
that prevents a fault from occurring when the firmware region does not match the ROM image
that was loaded. Without patching this check, the injector would not be able to write the payload
into the firmware region or modify the jumptable to point to it without faulting the device.

TLP:WHITE

Page | 15 of 24 TLP:WHITE

Step 11

Step 12

Finalize

Step 13Step 9

Step 10

Step 8

Step 7

Step 6

Step 5

Unset user flag, IC/DC

Exploit!

Can patch
RAM check?

Yes

Can patch
jumptable?

Yes

No

No

Inject imain.bin
Into firmware area

Payload
is valid?No

Get target address

Address is valid?

Yes

No

Existing payload?

Yes

No

Zero out payload

Yes

Payload
length valid?

Destination
Is empty?

Yes

Payload fits
after address?

Yes

No

Target = after address

No

Copy payload into FW

Patch jumptable entry

Patch RAM check

Flush instruction cache

Disable interrupts

Enable interrupts

Restore system state

Figure 7: Full injection process.

5.3.4. Vulnerability
The previously-unknown vulnerability affecting Tricon MP3008 firmware versions 10.0–10.4
allows an insecurely-written system call to be exploited in order to achieve an arbitrary two-byte
write primitive, which is then used to gain supervisor privileges. There are a number of factors
that contribute to this system call being exploitable:

• The system call directly reads from three memory addresses from the control program area
without any verification. Because these are userspace addresses, they may be written by a
hand-crafted PowerPC program, such as the injector.

• The system call has few side-effects; it is designed to return information about the state of a
firmware-level feature. This means that the userspace pointers may be changed for the
duration of the system call such that they still appear “valid” (do not cause any out-of-bounds
accesses) and will not fault the device.

TLP:WHITE

Page | 16 of 24 TLP:WHITE

• The input values to the system call may be controlled such that the value that is written to the
output structure is the same as that passed in. This allows a specific two-byte value to be
copied from one of the input structures into one of the output pointers.

• No checking is performed on the output addresses to ensure the pointers do not refer to the
firmware region or other protected areas. This allows for data to be written to normally
immutable and/or privileged regions.

When the system call is triggered (via the sc instruction), the processor automatically saves the
current MSR contents—which includes the user/supervisor flag, among a variety of other
things—into the SRR1 register. The firmware implementation of the system call then saves this
SRR1 register into a predictable address. When the system call returns, this stored SRR1
register is restored, moved back into the MSR, and execution resumes at the instruction after the
sc instruction.

Exploiting the vulnerability allows the attacker to write two bytes into the location of the stored
SRR1 register, replacing it with another valid but different MSR value. When the system call
returns, the modified MSR is restored, giving the attacker supervisor access and disabling the
instruction and data caches. Once the attacker has finished their desired actions, the system
state is restored by performing a “manual” system call—jumping to the address of the system call
handler, rather than using the sc instruction.

5.3.5. Implant
The implant, in many ways, is far more straightforward than the injector. This code is run when
the compromised TS protocol command is received and provides RAT-like functionality. Most
importantly, it allows an actor to read and write memory—including within the in-memory
firmware region—and execute arbitrary code regardless of the key switch position, including
“RUN.” This allows an actor to effect changes on the controller while it is in full operation, not just
while it is being reprogrammed. Figure 8 shows the control flow of this component.

TLP:WHITE

Page | 17 of 24 TLP:WHITE

Execute

Read Memory

Write Memory NoNo

NoNo

No No

No

No

User Write

Firmware

Get packet

imain.bin

MP value
matches?

Branch to original code

Build Response

Subcommand
value?

Packet looks
correct?

Copy response/length

Hand packet back

Address in
firmware area?

Yes
Branch to address

Yes
Resp. length = 0x0

Packet looks
correct?

Read size
within bounds?

Yes
Resp. length = read size

Yes
Copy memory to packet

Packet looks
correct?

Write size
within bounds?

Write in
firmware area?

Copy to memory

Yes Yes

No

Resp. length = 0xA

Firmware Write

Copy to memory

Disable addr. translation

Flush instruction cache

Enable addr. translation

Yes

249

23

65

Figure 8: Operation of implant.

Structurally, this component is not laid out like a function; instead, it is written to replace a branch
in a jumptable. This means that it has a few differences from the rest of the code, such as it not
having the same initial setup code (register/stack saving, etc.) and it branching to the default
case at the end of execution without setting a return address. This also means that some
registers are set prior to execution, as they would be for the other branches of the jumptable—
again reinforcing that this is not an entire function.

When execution is transferred from the firmware, the implant begins by getting the address of the
packet currently being processed. It then checks to see whether the “MP” is either 255 (0xFF), or
equal to a byte stored in memory. It is not clear what “MP” means in this context—this is how the
Python module names the optional argument that gets written into the packet. If the value
matches, the implant then checks to see if the subcommand value stored in the packet is a
known value—one of 23, 65, or 249, telling it to read memory, write memory, or execute.

• The subcommand 23 (read memory) takes two arguments: the memory address to read from
and the size of the read. When it is triggered, the implant performs some checks on the rest
of the packet to ensure that the two arguments it needs are present, verifies that the read
size is greater than 0 and less than or equal to 1024, then copies memory into the response
packet based on the input arguments. The packet response size is based on the amount of
data read.

• The subcommand 65 (write memory) takes two arguments: the memory address to write to
and the data to write. This command is the most complicated of the three. When it is
triggered, the implant checks to make sure the arguments are present, ensures that there is a

TLP:WHITE

Page | 18 of 24 TLP:WHITE

non-zero amount of data to write, then checks to see whether the write is within the firmware
memory region.

o If the write is in a userspace region, the implant simply writes the provided data to the
memory address specified.

o If the write is in the firmware region, the implant goes through a more complicated
process to ensure that the code being written has no chance of being executed during the
write, and that the changes take effect immediately. In order to accomplish this, it
disables address translation/caching and external interrupts, copies the provided data to
the address specified, and flushes the instruction cache, then re-enables address
translation/caching. It is worth noting that this is very similar to what the exploit does to
write to the firmware region.

• The subcommand 249 (execute) takes a single argument: the address to call. When this
command is triggered, the implant checks that the packet contains an address and that the
provided address is within the firmware region, then calls that address.

Once the subcommand has finished executing, the implant builds the response packet using a
length determined by the subcommand and a fixed response code, and branches back to the
original default jumptable case, finishing its execution.

Although this is a fairly simplistic RAT, one can use these primitives to build much more
complicated actions. For example, one could execute arbitrary code on a Tricon by reading
memory to figure out where to place the custom function and return value, writing the custom
code to an empty location, executing at the address of the shellcode, storing a return value
elsewhere in memory; and reading memory to extract the return value. This was proven during
testing with a modified version of the implant that had known bugs fixed, providing first-hand
evidence that this capability is very real.

6. Implications
While it is safe to say that HatMan is a valuable tool for ICS reconnaissance, it is likely designed
as part of a multi-pronged attack that collectively would degrade industrial processes, or worse.
Were both the process and the safety systems to be degraded simultaneously, physical harm
could be effected on persons, property, and/or the environment—barring the presence of
additional safety mechanisms.

Due to the unique nature of each facility, there is no way for the Department of Homeland
Security (DHS) to assess the impact of this malware on an individual plant. Thus, DHS strongly
advises that individual asset owners assess the impact of a compromise on their safety systems.
Facility owners/operators should discuss the impact of a safety system compromise and consider
adding contingencies to their continuity of operations planning for impacts associated with such a
compromise at their facility.

The construction of the different HatMan components indicates significant knowledge about ICS
environments—specifically Tricon controllers—and an extended development lifecycle to refine
such an advanced attack. In addition, it is very likely that an additional component or a separate

TLP:WHITE

Page | 19 of 24 TLP:WHITE

piece of malware has been developed to impact a control system in tandem with a HatMan
attack on the safety system. Although we can theorize what this might look like—considering the
areas in which Triconex equipment is used—this piece of the puzzle has not yet been revealed.

It is also worth considering the possibility of other actors moving into this attack space. Because
the HatMan samples have been made public—some files are on VirusTotal and many have been
made available on other sites—it is very likely that both researchers and other threat actors alike
are doing their own analysis. In particular, the components made available could allow another
party to build a similar attack, or to use it as a basis for attacks on other systems. To this end, the
security of all safety systems, not just Triconex controllers, should be considered.

One of the library files—crc.pyc—also poses an interesting conundrum. Based on its contents,
it would appear that this file was either built for interaction with other ICS systems, or part of an
unknown project that dealt with ICS equipment. Although we cannot substantiate such a claim
with hard evidence, one could, in the worst case, interpret this as proof of development of
another “prong” of the HatMan attack on both control and safety systems.

7. Detection/Mitigation
Schneider Electric is in the process of providing an updated security bulletin describing a method
for detecting—and removing—the HatMan malware. They have directed Triconex users to
contact their Global Client Support team to learn more.

In addition, a Yara rule that matches the three binary components—trilog.exe, inject.bin,
and imain.bin—is included as an appendix. This is not a reliable method for detection, as the
files may or may not be present on any workstation, and such a rule cannot be used on a Tricon
controller itself; however, it could be useful for detection with agent-based detection systems or
for scanning for artifacts.

A number of vendors that provide solutions for detecting anomalies through passive network
scanning have added the capability to detect the network traffic generated by the HatMan
malware. Although this may not specifically prevent an attack, it would allow for an early warning
that the malware might exist on a particular network or safety system.

It is worth noting that the onboard security features of Triconex hardware do not serve as
effective prevention/mitigation. The ACLs that are available are solely based on IP address,
meaning that an attacker could still use the programming workstation to compromise the safety
device. Later Triconex devices have X.509 signing for programming, but this is also not a
bulletproof mitigation strategy, as it is entirely feasible for the authors to update their script to
employ these certificates—resident on the programming workstation—to sign any updates they
push, circumventing the measure. At best, this would be a stop-gap measure.

Ultimately, the best mitigation strategy for this malware—and others of the same sort—is to
employ defense in depth and follow any relevant best practices. Rather than solely attempting to
protect vulnerable targets—such as the Triconex devices targeted by HatMan—one prevents an
attacker from ever reaching them.

TLP:WHITE

Page | 20 of 24 TLP:WHITE

8. Contact Information
Recipients of this report are encouraged to contribute any additional information that they may
have related to this threat. For any questions related to this report, please contact NCCIC at:

• Phone: +1-703-235-8832

• Email: NCCICCustomerService@hq.dhs.gov

9. Feedback
DHS strives to make this report a valuable tool for our partners and welcome feedback on how
this publication could be improved. You can help by answering a few short questions about this
report at the following URL: https://www.us-cert.gov/forms/feedback

mailto:NCCICCustomerService@hq.dhs.gov
https://www.us-cert.gov/forms/feedback

TLP:WHITE

Page | 21 of 24 TLP:WHITE

Appendix A: YARA Signature
The following is a YARA rule that matches the binary components of the HatMan malware. This
rule is also available on the ICS-CERT website.

/*
* DESCRIPTION: Yara rules to match the known binary components of the HatMan
* malware targeting Triconex safety controllers. Any matching
* components should hit using the "hatman" rule in addition to a
* more specific "hatman_*" rule.
* AUTHOR: DHS/NCCIC/ICS-CERT
*/

/* Private rules that are used at the end in the public rules. */
private rule hatman_setstatus : APT unknown_attribution hatman RAT {
 strings:

$preset = { 80 00 40 3c 00 00 62 80 40 00 80 3c 40 20 03 7c
 ?? ?? 82 40 04 00 62 80 60 00 80 3c 40 20 03 7c
 ?? ?? 82 40 ?? ?? 42 38 }

 condition:
 $preset

}
private rule hatman_memcpy : hatman {
 strings:

$memcpy_be = { 7c a9 03 a6 38 84 ff ff 38 63 ff ff 8c a4 00 01
 9c a3 00 01 42 00 ff f8 4e 80 00 20 }

$memcpy_le = { a6 03 a9 7c ff ff 84 38 ff ff 63 38 01 00 a4 8c
 01 00 a3 9c f8 ff 00 42 20 00 80 4e }

 condition:
$memcpy_be or $memcpy_le

}
private rule hatman_dividers : hatman {
 strings:

$div1 = { 9a 78 56 00 }
$div2 = { 34 12 00 00 }

 condition:
$div1 and $div2

}
private rule hatman_nullsub : hatman {
 strings:

$nullsub = { ff ff 60 38 02 00 00 44 20 00 80 4e }
 condition:

$nullsub
}

https://ics-cert.us-cert.gov/sites/default/files/file_attach/MAR-17-352-01.yara

TLP:WHITE

Page | 22 of 24 TLP:WHITE

private rule hatman_origaddr : hatman {
 strings:

$oaddr_be = { 3c 60 00 03 60 63 96 f4 4e 80 00 20 }
$oaddr_le = { 03 00 60 3c f4 96 63 60 20 00 80 4e }

 condition:
$oaddr_be or $oaddr_le

}
private rule hatman_origcode : hatman {
 strings:

$ocode_be = { 3c 00 00 03 60 00 a0 b0 7c 09 03 a6 4e 80 04 20 }
$ocode_le = { 03 00 00 3c b0 a0 00 60 a6 03 09 7c 20 04 80 4e }

 condition:
$ocode_be or $ocode_le

}
private rule hatman_mftmsr : hatman {
 strings:

$mfmsr_be = { 7c 63 00 a6 }
$mfmsr_le = { a6 00 63 7c }
$mtmsr_be = { 7c 63 01 24 }
$mtmsr_le = { 24 01 63 7c }

 condition:
($mfmsr_be and $mtmsr_be) or ($mfmsr_le and $mtmsr_le)

}
private rule hatman_loadoff : hatman {
 strings:

$loadoff_be = { 80 60 00 04 48 00 ?? ?? 70 60 ff ff 28 00 00 00
 40 82 ?? ?? 28 03 00 00 41 82 ?? ?? }

$loadoff_le = { 04 00 60 80 ?? ?? 00 48 ff ff 60 70 00 00 00 28
 ?? ?? 82 40 00 00 03 28 ?? ?? 82 41 }

 condition:
$loadoff_be or $loadoff_le

}
private rule hatman_injector_int : hatman {
 condition:

hatman_memcpy and hatman_origaddr and hatman_loadoff
}
private rule hatman_payload_int : hatman {
 condition:

hatman_memcpy and hatman_origcode and hatman_mftmsr
}

/* Actual public rules to match using the private rules. */
rule hatman_compiled_python : hatman {
 condition:

hatman_nullsub and hatman_setstatus and hatman_dividers
}

TLP:WHITE

Page | 23 of 24 TLP:WHITE

rule hatman_injector : APT unknown_attribution hatman RAT {
 condition:

hatman_injector_int and not hatman_payload_int
}
rule hatman_payload : APT unknown_attribution hatman RAT {
 condition:

hatman_payload_int and not hatman_injector_int
}
rule hatman_combined : APT unknown_attribution hatman RAT {
 condition:

hatman_injector_int and hatman_payload_int and hatman_dividers
}
rule hatman : APT unknown_attribution hatman RAT {
 meta:

author = "DHS/NCCIC/ICS-CERT"
description = "Matches the known samples of the HatMan malware."

 condition:
hatman_compiled_python or hatman_injector or hatman_payload
 or hatman_combined

}

 TLP:WHITE

DISCLAIMER: This report is provided “as is” for informational purposes only. The Department of Homeland Security (DHS) does not
provide any warranties of any kind regarding any information within. DHS does not endorse any commercial product or service
referenced in this advisory or otherwise. This document is distributed as TLP:WHITE: Disclosure is not limited. Sources may use
TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures
for public release. Subject to standard copyright rules, TLP:WHITE information may be distributed without restriction. For more
information on the Traffic Light Protocol, see https://www.us-cert.gov/tlp.

Page | 24 of 24 TLP:WHITE

	1. Executive Summary
	2. Acknowledgements
	3. A Note on Terms
	4. Analysis
	4.1. Vulnerable Systems
	4.2. Context: What are Safety Systems?
	4.3. Overview of Operation
	4.4. Components
	4.4.1. Reprogramming the Safety PLC
	4.4.2. The Malicious Payload

	5. Technical Details
	5.1. Module Archive
	5.1.1. TriStation Protocol Implementation
	5.1.2. CRC Support Module
	5.1.3. Assorted Support Module

	5.2. Python Executable
	5.2.1. Combined Payload
	5.2.2. Appending Programs
	5.2.3. Control Value Setting

	5.3. Injector/Implant
	5.3.1. Control Value
	5.3.2. Injector
	5.3.3. Injection Process
	5.3.4. Vulnerability
	5.3.5. Implant

	6. Implications
	7. Detection/Mitigation
	8. Contact Information
	9. Feedback
	Appendix A: YARA Signature

